STARLINE Series BT100 1 GHz Amplifier ## **FEATURES** - Simplify plant upgrades with modular RF design and 1.2 GHz capable housing - Improve amplifier reach with optional GaN technology and increased station tilt - Maintain current amplifier spacing with high output GaAs technology - Expand return path bandwidth with plug-in diplex filter support to 85 MHz - Minimize RF drift over temperature with optional analog or QAM ADU ## **PRODUCT OVERVIEW** For cable operators looking to ensure maximum backwards compatibility and scalability and protect network investments, ARRIS offers solutions that deliver new services with minimal CAPEX, enhance network efficiency, and increase subscriber satisfaction. The ARRIS 1 GHz BT100 Amplifier enables cable operators to increase forward capacity while maintaining current amplifier spacing of existing 750 and 870 MHz systems. The BT100 is available as a complete unit for greenfield deployments or as a drop-in RF module for 1 GHz upgrades to legacy STARLINE BTD, BT75, and BT87 amplifiers. Ask us about the complete Access Technologies Solutions portfolio: #### **Forward Path** The standard BT100 configuration is equipped with second-generation Enhanced Gallium Arsenide (E-GaAs) technology, which provides superior distortion performance over standard silicon and competing GaAs technologies. If operators require longer reach, the BT100 can be configured with optional Gallium Nitride (GaN) hybrid technology, which allows for a 3 dB increase in output level over the standard GaAs option. To provide additional system flexibility, easy installation and maintenance, the BT100 is compatible with standard accessories such as attenuators, equalizers, ADUs or QADUs, automotive fuses, and FTEC crowbar circuits. The amplifier maintains output level via an optional plug-in drive unit. In addition, operators can control level manually, thermally with the TDU (thermal drive unit) accessory, or electronically with the automatic drive unit (ADU). The ADU can support either analog or QAM pilot channels. The BT100 uses modular diplex filters, which operators can change to increase return bandwidth. The following filters are available for use with all US-style STARLINE RF distribution amplifiers (models BLE, MB/MBV3, BT): - K-split (5 to 42 MHz/54 to 1003 MHz) - A-split (5 to 65 MHz/85 to 1003 MHz) - N-split (5 to 85 MHz/104 to 1003 MHz) #### **Return Path** The BT100 comes standard with a high-gain return amplifier. Operators can select return path equalizers ranging from 0 to 12 dB. Thermal compensation is an optional feature, available as a JXP- TH*C plug-in, which stabilizes gain and match over temperature extremes. ### **Backward Compatibility** The BT100 electronics package can be dropped into legacy BTD, BT75, and BT87 amplifiers. All BT* products are capable of 15 A power passing. | COMPATIBILITY | | | | | |------------------|-----|------|------|------| | Platform | BTD | BT75 | ВТ86 | BT87 | | Upgrade to BT100 | Yes | Yes | Yes | Yes | | RELATED PRODUCTS | | |-------------------------|-----------------------| | ADU/QADU | BLE100 | | MB100 | MBV3 | | SFE/SRE EQ | Installation Services | | Flex Max® RF Amplifiers | | **HPON™/RFoG** | Specifications | Units | Forward | Return | |--|--------------|------------------------------|--------------------------------------| | Frequency split ¹ | MHz | K (54 – 1003) | K (5 – 42) | | , , , | | A (85 – 1003) | A (5 – 65) | | | | N (104 – 1003) ¹⁹ | N (5 – 85) | | latness ^{2,19} | dB | ± 0.7 | ± 0.75 | | Minimum Full Gain ³ | dB | 46 | 17.5 | | Operation Gain ⁴ | dB | 42 | NA | | Manual Bode Slope Control Range ⁵ | dB | ± 4 | NA | | Noise Figure ⁶ | dB | 10 | 8 | | Standard Slope Reference Frequency | MHz | 1003/550/54 | 35 (flat) | | Reference Output Level | dBmV | 51/44/37 | _ | | Operating Interstage Slope ⁷ | dB | 14 ± 1 | NA | | | ив | 14 ± 1 | INA | | Standard Slope Distortion Channels, Number of NTSC ¹⁷ | | 79 | | | Composite Triple Beat (CTB) 8,16 | dBc | 79 | 80 | | | dBc | 66 | 70 | | Cross Modulation (XM) 9,16 | | | | | Composite Second Order (CSO) 8,10,16 | dBc | 71 | 81 | | Carrier to Intermodulation Noise (CIN) ²¹ | dB | 65 | _ | | Channels, Number of 256 QAM | | 154 | _ | | Carrier to Intermodulation Noise (CIN) ^{20,21} | dB | 65 | _ | | est Point 11 | dB | 20 (± 1.0 dB) | 20 (± 1.0 dB) | | Return Loss 12 | dB | 15 | 15 | | Hum Modulation @ 12A | dBc | < 65 | < 60 | | Hum Modulation @ 15A 12 | dBc | < 60 | < 60 | | DC Voltage | VDC | | 24 | | Current DC Max. 18 | mA | | 2475 | | Power Consumption Max. | W | | 80 | | AC Input Voltage Range | VAC | | 38–90 | | AC Current Draw Max. | A | | 30 30 | | | A | | 0.00 | | @ 90 VAC | | | 0.90 | | @ 60 VAC | | | 1.42 | | @ 38 VAC | | | 2.25 | | AC Bypass Current (all ports) 14 | А | | 15 | | Group Delay ¹⁵
K-split | | | | | 55.25 to 58.83 MHz | nSec | 52 | NA | | Group Delay ¹⁵ | | | | | A-split | | | | | 86.25 to 90.68 MHz | nSec | 28 | NA | | | <u> </u> | - | | | Group Delay ¹⁹
N-split | | | | | 109.25 to 112.83 MHz | nSec | 14 | NA | | 112.25 to 116.68 MHz | nSec | 12 | NA
NA | | | *6 | | 40 +- + CO | | Operating Temperature Range | °C
°F | | -40 to +60
-40 to +140 | | | in she - | | 21 6 v 10 6 v 7 7 | | Housing Dimensions, L x W x D | inches
mm | | 21.6 x 10.6 x 7.7
549 x 270 x 196 | | | | | | | | lb | | 27 | | Specifications | Units | Forward | Return | |---|-------|------------------------------|------------| | Frequency split ¹ | MHz | K (54 – 1003) | K (5 – 42) | | - dr | | A (85 – 1003) | A (5 – 65) | | | | N (104 – 1003) ¹⁹ | N (5 – 85) | | Flatness ^{2,19} | dB | ± 0.7 | ± 0.75 | | Minimum Full Gain ³ | dB | 46 | NA | | Operation Gain ⁴ | dB | 42 | 17.5 | | Manual Bode Slope Control Range ⁵ | dB | ± 4 | NA | | Noise Figure ⁶ | dB | 10 | 8 | | Ultra Slope Reference Frequency ⁷ | MHz | 1003/550/54 | 35 (flat) | | Reference Output Level | dBmV | 57/48/39 | _ | | Operating Interstage Slope | dB | 18 ± 1 | NA | | Ultra Slope Distortion | | | | | Channels, Number of NTSC | | 79 | | | Composite Triple Beat (CTB) 8,16 | -dBc | 70 | 80 | | Cross Modulation (XM) 9,16 | –dBc | 58 | 70 | | Composite Second Order (CSO) 8,10,16 | –dBc | 69 | 81 | | Carrier to Intermodulation Noise (CIN) ²¹ | dB | 58 | _ | | Channels, Number of 256 QAM | | 154 | _ | | Carrier to Intermodulation Noise (CIN) ^{20,21} | dB | 58 | _ | | Standard Slope Reference Frequency ⁷ | MHz | 1003/550/54 | 35 (flat) | | Reference Output Level | dBmV | 51/44/37 | _ | | Operating Interstage Slope ⁶ | dB | 14 ± 1 | NA | | Standard Slope Distortion | | | | | Channels, Number of NTSC ¹⁷ | | 79 | | | Composite Triple Beat (CTB) 8,16 | -dBc | 75 | 80 | | Cross Modulation (XM) 9,16 | -dBc | 66 | 70 | | Composite Second Order (CSO) 8,10,16 | -dBc | 71 | 81 | | Carrier to Intermodulation Noise (CIN) ²¹ | dB | 66 | _ | | Channels, Number of 256 QAM | | 154 | _ | | Carrier to Intermodulation Noise (CIN) ^{20,21} | dB | 66 | _ | | Test Point ¹¹ | dB | 20 (± 1.0 dB) | | | Return Loss ¹² | dB | 15 | 15 | | Hum Modulation @ 12A | dBc | < 65 | < 60 | | Hum Modulation @ 15A ¹⁸ | dBc | < 60 | < 60 | | DC Voltage | VDC | 24 | | | Current DC Max. ¹³ | mA | 247 | 5 | | Power Consumption Max. | W | 80 | | | AC Input Voltage Range | VAC | 38-5 | 90 | | | | | | | Specifications – E-GaN (continued) | | | | |---|--------------|--|------------------| | Specifications | Units | Forward | Return | | AC Current Draw Max. @ 90 VAC @ 60 VAC @ 38 VAC | А | 1. | .90
42
.25 | | AC Bypass Current (all ports) 14 | А | 1 | 15 | | Group Delay ¹⁵
K-split
55.25 to 58.83 MHz | nSec | 52 | NA | | Group Delay ¹⁵ A-split 86.25 to 90.68 MHz | nSec | 28 | NA | | Group Delay ^{15,19}
N-split
109.25 to 112.83 MHz
112.25 to 116.68 MHz | nSec
nSec | 14
12 | NA
NA | | Operating temperature range | °C
°F | -40 to +60
-40 to +140 | | | Housing dimensions, L x W x D | inches
mm | 21.6 x 10.6 W x 7.7 D
549 L x 270 W x 196 D | | | Weight | lb
kg | 27
12.2 | | - Operating passband of station. Diplex filters are plugged into the electronic chassis. - Referenced to the average gain across the passband. - Minimum full gain at 1003 MHz includes loss of equalizer but Bode slope reserves have not been set. Return gain includes loss of SRE-*-4 return equalizer. Measured at Fmax return. - Includes loss of gain reserves as well as equalizer. - From midpoint (typical setting is -4 dB at 1003 MHz @ 25 °C). This control should not be used for gain reduction. - 6. Specified at the housing cable entry facility over temperature and includes the loss of 1 dB for the pre-stage equalizer. The return noise figure includes the station loss preceding the RF hvbrid. - Amount of slope created and cable equivalence of fixed, plug-in interstage equalizer. - 8. Measured with CW carriers and spectrum analyzer over specified temperature range. References the worst-case channel.* - Measured with wave analyzer and synchronous, 100% depth modulated channels. References the worst-case channels over specified temperature range. * - 10. Refers only to beat clusters that fall 0.75 MHz and 1.25 MHz above the subject picture carrier. - 11. Test points should be used with GFAL adapter. - 12. Match measurement at the station input and output, cable- entry facilities, at the specified passbands for operational gain. - 13. Current draw at 24 VDC. - 14. Stated in RMS continuous. - 15. Specified for standard NTSC video, where delay is the delta from picture carrier to 3.58 MHz color subcarrier. Reverse delay is in a 1.5 MHz bandwidth. - 16. Worst-case over temperature in a cascade. - 17. NTSC 79 Channel forward, 75 QAM carriers -6dB relative to analog CW carriers. 6 Channel return. - 18. Specification is 55 from 5 to 10MHz at 15A. - 19. For N-split (5-85/104-1003MHz) roll-off from 105 MHz to 102 MHz < 1.0 dB. Group delay from 103.25 MHz to 105.25 MHz is < 22 ns. - 20. 154 QAM carriers 54-1002 MHz. Carriers are -6dB relative to virtual analog levels. - 21. Room temperature performance. - * Specifications are compliant with the test methods as stated in NCTA Recommended Practices for Measurements on Cable Television ## 1 GHz BT Ordering Guide - 1. Not all combinations in the ordering guide are available. This is a guide only. - 2. FTECs are included in all models as standard. | Required Accessories | | | | |---|--|--|--| | Part Number | Model | Description | | | 535723-001-00
531124-001 to -022
531161-001 to -010 | SFE-100-0
SFE-100-1 to -22
SCS-1 to SCS-10 | Forward 1003 MHz equalizer (0 dB) -or-
Forward 1003 MHz equalizer (values 1 to 22 dB 1n 1 dB steps) -or-
Cable simulator (values 1 to 10 dB in 1 dB steps) | | | 531163-XXX-00 | SRE-*-* | Return equalizer, 5-42 MHz (K-split), 5-65 (A-split), 5-85 (N-split), values 0 to 12 dB 1n 2 dB steps | | | 531186-XXX-00 | JXP-*B | Plug-in attenuator/pad (values 0 to 26 dB in 1 dB steps) | | | Optional Accessories | | | |----------------------|-----------------|----------------------------------| | Part Number | Model | Description | | 594742-002-00 | QADU-609.00/S-R | 609 MHz QAM Automatic Drive Unit | | 594742-001-00 | QADU-711.00/S-R | 711 MHz QAM Automatic Drive Unit | | 531236-003-00 | ADU-499.25/S-R | 499.25 MHz Automatic Drive Unit | ## **Customer Care** Contact Customer Care for product information and sales: United States: 866-36-ARRIS International: +1-678-473-5656 Note: Specifications are subject to change without notice. Copyright Statement: @ARRIS Enterprises, Inc. 2015 All rights reserved. No part of this publication may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from ARRIS Enterprises, Inc. ("ARRIS"). ARRIS reserves the right to revise this publication and to make changes in content from time to time without obligation on the part of ARRIS to provide notification of such revision or change. ARRIS and the ARRIS logo are all registered trademarks of ARRIS Enterprises, Inc. Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and the names of their products. ARRIS disclaims proprietary interest in the marks and names of others. The capabilities, system requirements and/or compatibility with third-party products described herein are subject to change without notice. (rev 10-2014) BT100_DS_27OCT14